Die-to-die interconnect in a post-Moore world

Ron Ho, Ph.D.

Director, Silicon Engineering, Facebook

A personal corporate history of Moore's Law

Only the paranoid survive!

Can "Super IO"™ obviate Moore's Law?

Big data: SW peeps decide to build HW!

But custom Si is too costly for most people!

AR/VR: SW peeps decide to build HW!

All logos are property of their respective owners.

Moore's Law in a nutshell

All logos are property of their respective owners.

Moore's Law in a nutshell

Moore's Law in a nutshell

Why Moore's Law has been so great

Energy per operation (fJ)

S. Rabii, VLSI Symp. 2019

Why Moore's Law has been so great

Why Moore's Law has been so great

S. Rabii, VLSI Symp. 2019

Wait... isn't Moore's Law dead?

• This is the theory...

M. Bohr, IEDM 2015

Hm. It's certainly dying ...

Rhetorical question #1

If Moore's Law enabled "on-chip-everything"; And "on-chip-everything" enabled low energy; And "low energy" is EVERYTHING... What the heck do we do after Moore's Law?

Rhetorical question #1

- You're porting a design to an advanced FinFET logic process
 - ...tuned for low-power CPUs, NOT low-variability high-speed analog circuits
- Unfortunately, you also need 28Gbps standards-compliant Ethernet
 - Do you hire 100 people & spend 2 years to re-design the analog serdes?

- You're porting a design to an advanced FinFET logic process
 - ...tuned for low-power CPUs, NOT low-variability high-speed analog circuits
- Unfortunately, you also need 28Gbps standards-compliant Ethernet
 - Do you hire 100 people & spend 2 years to re-design the analog serdes?
- NO!! Keep the analog on a "friendly" (older) process, use EMIB

- You're porting a design to an advanced FinFET logic process
 - ...tuned for low-power CPUs, NOT low-variability high-speed analog circuits
- Unfortunately, you also need 28Gbps standards-compliant Ethernet
 - Do you hire 100 people & spend 2 years to re-design the analog serdes?
- NO!! Keep the analog on a "friendly" (older) process, use EMIB

R. Mahajan et al., ECTC 2016 Bridge

What are the keys to EMIB?

• N

DIE

High-density microsolder to minimize serialization and de-serialization
Short channels whose performance is RC-dominated
Modularity and standardization for "circuit construction of correctness"
Straightforward packaging concept avoids incremental risks

R. Mahajan et al., ECTC 2016

Bridge

What are the keys to EMIB?

• N

DIE

High-density microsolder to minimize seria simplicity Short channels whose performance is RC LOW ENERGY Modularity and standardization for "circuit const simplicity" of correctness" Straightforward packaging conceptov COST incremental risks

- You want to build co-packaged optics (the Si photonics edition)
 - ...to leverage a >10x improvement in energy/bit over long electrical links

- **JSSC 2012**
- A transmitter needs silicon processing to minimize thermal effects
- A receiver needs a non-silicon photodiode and a high SNR

- You want to build co-packaged optics (the Si photonics edition)
 - ...to leverage a >10x improvement in energy/bit over long electrical links

- A transmitter needs silicon processing to minimize thermal effects
- A receiver needs a non-silicon photodiode and a high SNR

- You want to build co-packaged optics (the Si phenetics)
 - ...to leverage a >10x improvement in energy/bit ove

 $= \frac{1}{2\pi BW C_{\rm d}}$

- A transmitter needs silicon processing to minimize thermal effects
- A receiver needs a non-silicon photodiode and a high SNR

What are the keys to photonic integration?

High-density microsolder to minimize serialization and de-serialization Short channels with minimal capacitive loading

- TX energy directly proportional to channel capacitance
- RX's SNR inversely proportional to channel capacitance Separation of optical devices from CMOS enables cost feasibility
 - TX's micromachining to reduce thermal crosstalk
 - RX's heterogenous materials separated from CMOS fab

A receiver needs a non-silicon photodiode and a high SINK

u et al., SC 2012

A receiver needs a non-silicon photodiode and a high SNK

Rhetorical question #2

We don't always *want* monolithic chips; Separate chips can be simpler, less risky, or lower cost; How do we enable such heterogenous systems?

Rhetorical question #2

The virtue of simplified die-to-die interfaces

Use cases are pretty clear

- Extend (cost and energy versions of) Moore's Law
- Enable tailoring of silicon needs to diverse applications

Key characteristics are also pretty clear

- Low energy (and low-cost) is critical
- Simplicity and standardization unlocks productization

Thank you

