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A personal corporate history of Moore’s Law
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Only the paranoid survive!
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Can “Super |I0”™ obviate Moore’s Law?
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Big data: SW peeps decide to build HW!
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But custom Si is too costly for most people!
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AR/VR: SW peeps decide to build HW!
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Moore’s Law in a hutshell
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Moore’s Law in a hutshell
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Why Moore’s Law has been so great
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Why Moore’s Law has been so great

4 )
Energy efficiency is EVERYTHING

Power = Energy / operation  * operation / second
= Energy efficiency!  * performance
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Why Moore’s Law has been so great
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Wait... isn’t Moore’s Law dead?

* This is the theory...
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Hm. It’s certainly dying...

Why EUV |S So Difficult ‘ “...GF is putting its 7nm FinFET
A-one o GostTrend program on hold indefinitely...”
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Rhetorical question #1

If Moore’s Law enabled “on-chip-everything”;
And “on-chip-everything” enabled low energy;
And “low energy” is EVERYTHING...
What the heck do we do after Moore’s Law?



Rhetorical question #1
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Would you ever NOT want integration?

* You're porting a design to an advanced FinFET logic process
 ...tuned for low-power CPUs, NOT low-variability high-speed analog circuits

e Unfortunately, you also need 28Gbps standards-compliant Ethernet
* Do you hire 100 people & spend 2 years to re-design the analog serdes?
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Would you ever NOT want integration?
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What are the keys to EMIB?
e Ul
High-density microsolder to minimize serialization and de-serialization
e N Short channels whose performance is RC-dominated
Modularity and standardization for “circuit construction of correctness”
=4 Straightforward packaging concept avoids incremental risks
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Would you ever NOT want integration?

* You want to build co-packaged optics (the Si photonics edition)
e ...to Ieverage a >10x improvement in energy/bit over long electrical links
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* A transmitter needs silicon processing to minimize thermal effects
* Areceiver needs a non-silicon photodiode and a high SNR
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Would you ever NOT want integration?
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Would you ever NOT want integration?
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What are the keys to photonic integration?

High-density microsolder to minimize serialization and de-serialization

Short channels with minimal capacitive loading

. TX energy directly proportional to channel capacitance

. RX’s SNR inversely proportional to channel capacitance
Separation of optical devices from CMOS enables cost feasibility
. TX’s micromachining to reduce thermal crosstalk

. RX’s heterogenous materials separated from CMOS fab

Y

uetal.,
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Rhetorical question #2

We don’t always want monolithic chips;
Separate chips can be simpler, less risky, or lower cost;
How do we enable such heterogenous systems?



Rhetorical question #2

We don’t alwi-
Se( : : . A
Standardlzed die-to-die interfaces to the rescue
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e Separate chips with unlike technology needs !
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The virtue of simplified die-to-die interfaces

Use cases are pretty clear
e Extend (cost and energy versions of) Moore’s Law
* Enable tailoring of silicon needs to diverse applications

Key characteristics are also pretty clear
* Low energy (and low-cost) is critical
* Simplicity and standardization unlocks productization



Thank you
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